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Abstract
We determine the structural data of seven of the polymorphs of ice (ice Ih, ice
Ic, ice IX, ice II, ice VI, ice VII and ice VIII) fromab initio calculations. The
dynamical properties have been analysed within the harmonic approximation
via a finite-difference evaluation of dynamical matrices from atomic forces.
Supercells are used to model the various ordered and disordered phases
considered. Calculations are done at zero pressure in order to compare directly
with neutron scattering studies performed on recovered phases. The normal
modes are resolved into projections chosen to display their intra- and inter-
molecular character. Further projections are performed for ice VI, ice VII and
ice VIII to probe the interactions between sub-lattices. Trends in the dynamical
results are discussed in terms of changes in the structural complexity of the
various phases considered.

1. Introduction

Experimental techniques including inelastic neutron scattering, infrared spectroscopy and
Raman spectroscopy enable excitations of the crystal structure in condensed matter to be
directly measured through a wide range of energies and hence obtain information on the
microscopic nature of the bonding. The spectra obtained by these methods applied to the
ice phases considered in this study are complicated and difficult to interpret [1] due to both
the large ranges of geometrical data and the coexistence of covalent and hydrogen bonding.
In such systemsab initio simulation of the lattice vibrations provides a direct method for
determining the microscopic nature of vibrational modes that characterize different regions of
the observed spectra, and is an invaluable tool in the interpretation of these spectra.

1 Author to whom corresspondence should be addressed.
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Figure 1. The experimental water–ice phase diagram [1].

Here we present a comprehensive study of the structure and dynamical properties of ice
across its phase diagram viaab initio structural and lattice dynamics simulations. We will
present the data in such a way as to highlight trends in the different structures as we move
across the phase diagram (see figure 1). In particular we make comparison with dynamical
spectra as measured by incoherent inelastic neutron scattering (IINS) studies [2–5]. All of
the ice phases considered in this study are comprised of recognizable water molecules and
obey the Bernal–Fowler ice rules [6] in that only one hydrogen atom exists between each
oxygen nearest neighbour pair forming a covalent bond with one oxygen and a hydrogen bond
with the other. Each oxygen atom is coordinated by two covalent bonds and two hydrogen
bonds. The near-perfect tetrahedral local geometry of bonding in the low-density phases
(ice Ic and ice Ih) is lost in the intermediate density phases (ice IX, ice II and ice VI) and
then re-formed in the high-pressure phases (ice VII and ice VIII). The intermediate-pressure
phases of ice possess rather non-cylindrical hydrogen bonds, i.e. the hydrogen atom is very
non-collinear with the two oxygen atoms at either end of the bonds. In order to explain the
origin of features in the vibrational density of states in terms of geometry the projected density
of states (PDOS) is used. Here the vibrational density of states is weighted by the projection
of eigenvectors onto translational and rotational rigid molecule modes and the normal modes
of the water molecules, full details of which are given in section 4.2. Features in the projected
vibrational density of states reflect the differences in geometry between phases. Both the low-
and high-pressure phases have near-cylindrical hydrogen bonds and, as we show, differences
in the spectra between these phases arise mainly from differences in the hydrogen bonded and
non-hydrogen bonded oxygen–oxygen separations.



Determination of structural data of ice polymorphs 9209

Previousab initio studies have concentrated on specific regions of the phase diagram. The
goals of these studies have been diverse: to study the cooperative effects of the interactions
between water molecules [7], to explain bond lengths [8], OH vibrational frequencies [9] or
the quadrapole coupling constants [10]. Most of these studies have used water clusters of
various sizes, with or without the long-range electrostatic interactions being accommodated.
Studies on ice VIII have been undertaken usingab initio periodic Hartee–Fock calculations
[11] and using Carr–Parinello molecular dynamics [12].

The structure of this paper is as follows: in section 2 we briefly outline the geometry of
the ice phases and in section 3 we describe the computational methods used throughout the
study. In section 4 we present the results, including the predicted structural parameters and
vibrational density of states. As mentioned above, the latter are further analysed by projection
of the calculated modes onto ‘pure’ intra-molecular modes and rigid molecule inter-molecular
modes to evaluate the PDOS. We present a discussion of trends and links between structural
parameters and the PDOS in section 5 and compare with the experiment. Finally we set out
our conclusions in section 6.

2. Geometry of the various ice structures

The structures of the phases considered in this study are described in detail in [13, 14]. The
principal features of the structures and the unit cells used in this study are described here.

Several of the ice phases can be described as near-tetrahedrally coordinated structures
(ice Ic, ice Ih, ice VII and ice VIII). In these structures each water molecule is tetrahedrally
coordinated by hydrogen bonds to four other molecules. Hydrogen bonds can be labelled
according to the relative orientation of the two molecules involved in making the bond.
Figure 2 describes the four possible local arrangements of the hydrogen bond, which we label
A, B, C and D. Several phases (ice Ic, ice Ih and ice VII) are said to be proton-disordered, i.e.
the orientations of the water molecules at each lattice site are disordered. Proton-disordered
phases are modelled by a periodic supercell approach. Here representative samples of all
possible proton arrangements in a particular supercell are used in the calculations. If and only
if one proton arrangement is preferred is the phase considered to be proton-ordered.

Ice Ih can contain A-, B-, C- and D-type hydrogen bonds with oxygen atoms forming a
wurtzite structure. The proton disorder is modelled within an eight-molecule supercell. Such
a supercell has 17 symmetry inequivalent arrangements [15], (a four-molecule unit cell of
this phase has only two unique symmetry arrangements Cmc21 and Cc). We chose particular
supercells containing a representative selection of the possible orientations of molecules.

Ice Ic consists of a diamond lattice and only contains C- and or D-type hydrogen bonds.
We use an eight-moleculesupercell to model the proton disorder. In such a cell we foundninety
configurations that obey the Bernal–Fowler rules, four of which are symmetry inequivalent.
Here we use a cell containing a representative selection of the possible orientations of
molecules. Ice Ic is a metastable phase and as such is not included on the phase diagram
[13].

In moving across the water phase diagram (see figure 1) from ice Ih to ice VIII we
observe progressive changes in the geometry of the ice phases. Ice IX and ice II have
two conformations of the water molecule and ice II has two types of hexagonal rings, both
consisting of 12 molecule unit cells. This ‘pluralization’ of the water molecules with increasing
pressure stops with ice VI, which contains five different water molecule conformations in two
very distorted sub-lattices. The ice VI structure used in the calculations is proton-ordered and
contains ten molecules in the unit cell. This phase, however, hasaverage values of its H–̂O–H
andα angular measurements (see section 5) closer to the collinearly bonded phases than either
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Figure 2. The geometrical arrangement of pairs of hydrogen bonded water molecules associated
with the four different types of hydrogen bond possible in ice Ic, ice Ih, ice VII and ice VIII. The
hydrogen bond is normal to the page and the atoms of the closest molecule represented by the
large black circle (oxygen) and the smaller white circles (hydrogen). The covalent bonds of this
molecule are represented by the thicker lines. The oxygen and one hydrogen atom of the other
molecule involved in the hydrogen bond are masked. The remaining hydrogen of this molecule is
represented by the small shaded circle with the thin line representing its covalent bond.

ice IX or ice II. Ice IX and ice VI are the only two phases in this study that do not possess
hexagonal rings. These phases are neighbours with ice Ih and ice VIII, respectively. This
suggests that these phases in particular possess structures with very compromised geometries
(see section 5). For these structures the primitive unit cell is used in the calculations.

As the density of ice is further increased we reach the ice VII and VIII phases. Both
of these structures consist of two inter-penetrating ice Ic hydrogen bonded lattices with non-
hydrogenbonding interactions occurring between the sub-lattices. Ice VIII is a proton-ordered
lattice with only D-type hydrogen bonds present. This results in sub-lattices with equal and
opposite dipole moments. Ice VII is the proton-disordered version of ice VIII. We model the
effect of proton disordering within 16 molecule supercells containing C- and D-type hydrogen
bonds. Only structures with zero net dipole moments are considered. We chose to model ice
VIII within a sixteen-molecule supercell for direct comparison with ice VII.

3. Computational methods

The electronic properties of the system are described using theab initio pseudopotential
method as implemented in the CASTEP code [16]. Here Kohn–Sham electronic states are
described using a plane-wave basis set and conjugate-gradient minimization used to find
the electronic ground state of the system. A norm-conserving pseudopotential is used to
describe the oxygen core and a bare Coulomb potential to describe the proton. The kinetic
energy cut-off of the plane-wave basis set used is relatively high (800 eV) in order to ensure
convergence of electronic properties. The generalized gradient approximation (GGA) [17]
to density-functional theory is used. This level of approximation has been shown to give a
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good description [18] of the properties of hydrogen bonds central to this study. Because of
the relatively large size of unit cells under study� point sampling of the Brillouin zone was
used in each system. For uniqueness in each case the total energy was minimized with respect
to all structural parameters including atomic positions and lattice vectors. No symmetry
constraints were imposed on the lattice relaxation. Atomic positions were relaxed until the
largest atomic force was less than 0.001 eV A−1 and lattice vectors to 0.1%. Starting structures
corresponding to oxygen atoms at symmetry sites and hydrogen positions determined by the
isolated molecular structure were used.Ad hoc tests were performed with random shifts in
starting structures but no difference in the final configurations for the structures described
here was found. The principle source of differences between calculated and experimental
structural parameters is the GGA. Typically O–O separations are predicted as being 2% too
large compared with the experiment. This difference is large compared to predicted structural
parameters in strongly bonded systems (covalent or ionic) using the same approximations
and is a consequence of the sensitivity of hydrogen bonds to many electron effects. This
fundamental limitation of the accuracy of predictions is used to further justify the use of�-
point sampling of the Brillouin zone in describing the charge density. For example, increasing
the density of sampling by a factor of eight in ice Ic results in a decrease in the predicted O–O
separation of 0.17% and does not represent a significant improvement in comparison with
experiment.

The relaxation of lattice vectors means that the zero-pressure properties of the ice phases
are being predicted and we note that all phases considered except ice Ih are metastable at
this pressure. The reasons for performing calculations at zero pressure are twofold. Firstly,
this is the most unique choice of pressure we can make to perform comparisons across the
phases [14] and secondly, the most extensive neutron scattering studies of ice with which
we make comparison were performed using the recovered technique, i.e. by quenching the
pressurized sample in liquid nitrogen and then releasing the pressure [2]. After the pressure
release the structure remains with lattice parameters relaxing to their ambient-pressure values.
Differences between zero pressure and ambient (1 atmosphere) pressure are insignificant.

The dynamical properties of the lattices under consideration are modelled within the
harmonic approximation. The zone-centre dynamical matrix associated with the supercells
are obtained by a finite-difference method based on the evaluation of atomic forces when
atoms are shifted from their equilibrium positions [19, 20]. The calculation of the dynamical
matrix is formulated as follows. We may write the total energy of the lattice as a truncated
Taylor expansion [21]:

E = E0 +
1

2

∑
ij

Aijuiuj +
1

6

∑
ijk

Bijkuiujuk (1)

whereE0 represents the equilibrium lattice energy andui is a general coordinate of an ion
within the super cell relative to the minimum energy configuration (i labels both the ion and
a particular Cartesian direction).Aij andBijk are constant second- and third-order tensors,
respectively.Aij describes the harmonic response of the lattice and is used to construct the
dynamical matrix from

Dij = 1

(mimj )1/2Aij (2)

where themi represent the ionic masses. Note that theui represents a periodic distortion of the
lattice from the equilibrium, henceAij is directly related to the dynamical matrix rather than
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the force-constant matrix. Ignoring higher order terms in the energy expansion the force on a
general coordinate is obtained as

Fi = − dE

dui

= −
∑
j

Aijuj − 1

2

∑
jk

Bijkujuk. (3)

We now independently shift each general coordinate by an amount±� and minimize the total
energy with respect to electronic degrees of freedom in order to obtain forces on all the ions
in this distorted configuration. IfF±�m

i represents the force on coordinatei due to a change
in coordinatem of ±� then

F±�m
i = ∓�Aim − 1

2�2Bimm. (4)

Taking differences of theF±�m
i we now obtain

F−�m
i − F +�m

i = 2�Aim (5)

from whichAij and henceDij are directly obtained. This shift in opposite directions ensures
cancellation of any cubic terms of the expansion whilst the quartic terms are assumed small
enough to ignore. The magnitude of� must be large enough to overcome errors in the forces
due to the noise produced by grid errors and small enough to ensure that quartic terms can be
ignored. The shift is chosen to be 0.1Å in all cases [22]. The method results in the evaluation
of bothAij andAji, the symmetry of the problem is such that we must haveAij = Aji. Due
to the non-symmetrical bonding in the systems under consideration and the finite-difference
approximation this equality is not exactly realized. This is corrected for by symmetrization
of the matrix after its complete evaluation. In addition sum rules dictate that

∑
i Aij = 0.

Again this is not exactly realized but is corrected by the distribution of the error in the sum
rule evenly between all elements in the matrix before symmetrization. Satisfying this sum
rule is especially important for the correct evaluation of the zero-frequency modes, the pre-
processing of the matrix simply enforces the evaluation of the zero-frequency modes and does
not significantly affect any other frequency.

We also note here that this direct evaluation of the dynamical matrix will not reproduce
TO–LO splitting. However, these effects are expected to be small (∼10 cm−1) [23] and will
not affect the findings of this study in any significant way. Similarly, acoustic modes (except
zone edge modes in some cases) are not reproduced hence no comparison of experimental
spectra is made in the acoustic frequency range.

4. Results

4.1. Static results

The principal structural parameters of the fully relaxed structures (in order of increasing
density) of the phases of ice considered in this study are shown in table 1 together with the
corresponding experimental values. For completeness we have also included the experimental
data of ice III, ice IV and ice V, whose structural complexity was beyond the scope of this
study. Since the calculations are performed at zero temperature and pressure we compare
them with data at the lowest available temperature extrapolated to atmospheric pressure [14].
The reasons for this choice of pressure are in order to make direct comparison with the IINS
on the recovered phases as explained in section 3. In the case of orientationally disordered
structures, the cell dimensions and number of molecules in a unit cell quoted refer to the
supercells used to represent the disorder. In disordered structures the space group refers to
the structure with average H-site occupancy. The O–O nearest neighbour distances quoted in
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Table 1. The calculated and experimental structural data for the phases of ice in this study. The
cell dimensions and number of molecules in a unit cell refer to the actual cells used in calculation.
In the cases of disordered systems these data refer to the supercell used to model the disorder. The
calculated data are listed first in each case followed by the experimental data in brackets. The
experimental data for ice III, IV and V have been included for completeness.

Distance of
Cell Number of Number of nearest O–O–O Hydrogen

Ice Crystal Space dimensionsa molecules in nearest neighbours angles positions Density

phase system groupb (pm, deg) a unit cell neighbours (pm) (deg) ordered? (g cm−3)

Ih Hexagonal P63/mmcb a = 441; 8 4 270 109.5– No 0.989
b = 763; 109.6
c = 720

(a = 450; (275) (109.3– (0.93)
c = 732) 109.6)

Ic Cubic Fd3m a = 623 8 4 270 109.4 No 0.989
(a = 635) (275 at (109.6) (0.94)

−130◦C)
II Rhombohedral R̄3 a = 770; 12 4 273–281 76.3– Yes 1.216

α = 113.1 131.6
(a = 778; (275–284) (80–128) (1.18)
α = 113.1)

III Tetragonal P41212 12 4 No (1.15)
(a = 673; (276–280) (87–141) N/A
c = 683)

IV Rhombohedral R̄3 c 16 4 No (1.27)
(a = 760; (279–292) (87.7– N/A
α = 70.1) 127.8)

V Monoclinic A2/a (a = 922; 28 4 No (1.24)
b = 754
c = 1035; (276–287) (84–128) N/A
β = 109.2)

VI Tetragonal P42/nmcc a = 625; 10 4 275–282 75.4–129 No (1.33)
c = 577

(a = 627; (280–282) (76–128) 1.328
c = 579)

VII Cubic Pn3m a = 685 16 8 295–298 109.8 No (1.56)
(a = 686) (295) (109.5) 1.485

VIII Tetragonal I41amdd a = 685; 16 8 299 110.3 Yes (1.56)
c = 705

(a = 678; (295) (109.3– 1.443
c = 699) 109.5)

IX Tetragonal P41212 a = 677; 12 4 272–275 95–134 Yes 1.138
c = 688

(a = 673; (276–280) (87–140) (1.16)
c = 683)

a For experimental data, values given are at atmospheric pressure and−163◦C unless noted otherwise.
b Unit cell used in calculations is orthorhombic with eight molecules in the unit cell.
c Ice VI used in calculations is proton ordered with space group Pmmn at−163◦C.
d Apply a tetragonal distortion along thec-axis toa = b = c = 686 pm where this is the zero pressurec parameter of ice VII.

table 1 for ice VII and ice VIII refer to molecules in the same sub-lattice, i.e. to molecules
hydrogen bonded to each other. The full spectrum of O–O distances are presented in figure 3,
which also includes the non-hydrogen bonded O–O distances in ice VII and VIII. The range
of O–O distances associated with hydrogen bonds are indicated between the arrows for ice
VII and VIII. The geometry of the structures evolves from the low-density phases (ice Ic, ice
Ih) through intermediate density (ice IX, ice II, ice VI) to the high-density phases (ice VII,
ice VIII) with the spread of the geometrical data being dependent on the complexity of the
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Figure 3. The calculated O–O separation data. For ice Ih, ice IX, ice II and ice VI all O–O
separations below 2.9̊A correspond to hydrogen bonded O–O separations, values greater than this
for these phases correspond to non-hydrogen bonded O–O separations. In ice VII and ice VIII the
hydrogen bonded O–O separations are marked with pairs of arrows.

structure. These changes are manifest in the nearest neighbour distances and O–O–O angles.
The predicted nearest neighbour distances increase from 2.70Å in ice Ih and Ic to 2.99Å
in ice VIII. At intermediate densities the complexity of structures is manifest in the range of
nearest neighbour distances. Similar changes are seen in the predicted O–O–O angles with
angles in ice Ih and Ic being very close to the ideal tetrahedral angle (109.47) the range of
angles then increases about this value for the intermediate density phases until a value close
to the ideal tetrahedral one is again obtained in ice VII and VIII.

The range of H–O–H angles of H2O molecules that form the structures is presented in
figure 4. Again the complexity of the intermediate-density structures is evident from the
increased range of H–O–H angles. Also, comparing the low-density tetrahedrally coordinated
structure ice Ih with the high-pressure tetrahedrally coordinated structures ice VII and VIII we
find values in ice Ih closer to the ideal tetrahedral angle of 109.47◦ compared to ice VII and
VIII. This trend is due to the longer, and weaker, H-bonds in ice VII and VIII allowing more
relaxation towards the isolated water molecule value of 104.52◦.

Further analysis of the predicted geometries is done with respect to three more angular
terms as shown in figure 5. The motivation here is to further classify changes in the local
geometry as a function of density and to provide explanations of trends in the dynamical
properties in terms of trends in these geometrical properties. The angles are defined as
follows: Theα angle is defined as the difference between the HOH angle of a particular
molecule and the Od–O–Od angle formed between the oxygen atom of that molecule and
the two oxygen donor atoms (Od) involved in hydrogen bonds with hydrogen atoms of that
molecule. Theβ angle represents the difference in orientation of the plane associated with
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Figure 4. The calculated H–O–H angular data for ice Ih, ice IX, ice II, ice VI, ice VII and ice VIII.
For reference the tetrahedral angle is 109.47◦ and the bond angle in the isolated water molecule is
104.52◦.

a particular water molecule and the plane defined by the oxygen of that water molecule and
the two Od atoms involved in hydrogen bonds to the hydrogen atoms of that molecule. The
γ angle is defined as the difference in orientation of the two planes defined by the hydrogen
atoms of a particular molecule and the two Od atoms involved in hydrogen bonds with them,
respectively. This angle represents the degree of twist experienced by a molecule relative to
the associated Od–O–Od plane.

The α angle data are presented in table 2 together with the corresponding values of
Od–O–Od and H–O–H angles. Phases with close to ideal tetrahedral coordination possess
small positive values of theα angle and reflect the small difference between the ideal tetrahedral
angle (109.47◦) and the H–O–H angle of the isolated water molecule (104.52◦). The distorted
structures of ice IX and ice II phases have only negative values. In ice VI there are positive
as well as negative values of theα angle and an average value of 3.2◦, close to that of the
collinearly coordinated phases. Theβ-angle data are presented in figure 6. Very small values
of β are predicted for the low- and high-density tetrahedrally coordinated phases of ice Ih, VII
and VIII as expected on geometrical grounds and an increased range of values is seen for the
intermediate density phases. Other features of note here are the large values ofβ predicted
in ice IX and VI. Theγ -angle data are presented in figure 7. On geometrical grounds very
small values ofγ are seen in the tetrahedrally coordinated phases. As structures are distorted
away from the tetrahedral geometryγ values with significant non-zero values are predicted.
A feature of note is the symmetry of theγ values in ice II about zero not present in the other
intermediate density structures.
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spheres represent oxygen atoms and small shaded spheres hydrogen atoms. The oxygen to the
lower left is covalently bonded to the two hydrogen atoms to form a particular molecule. The other
two oxygens in the figure are the oxygen donors (Od) involved in hydrogen bonds to the hydrogen
atoms. θ1 is the H–O–H angle and θ2 the Od–O–Od angle. n1 is normal to the H–O–H plane and
n2 is normal to the Od–O–Od plane. n3 and n4 are normals to the two H–Od–H planes.

Other geometrical features of note are associated with the high-density ice VII and VIII
phases. The presence of non-hydrogen bonded oxygen–oxygen separations in ice VII and ice
VIII which are shorter than the hydrogen bonded oxygen–oxygen separations are clearly seen
in figure 3. For ice VIII another structural parameter of interest is the relative displacement
of one hydrogen bonded sub-lattice with respect to the other. Neither of the sub-lattices in ice
VIII is centred in the interstices of its companion. The oxygens in one sub-lattice are displaced
along the c-axis, a distance δ relative to the centred position. The value for δ as determined
in this study for ice VIII is 0.23 Å. This compares well with the result of Ojamäe et al [11],
which is 0.24 Å. Because of this displacement, each molecule has two non-hydrogen-bonded
O–O separations (2.86 Å) which are closer than the four hydrogen-bonded O–O separations
(2.99 Å). We conclude this section with a note that variations in O–O distances and Od–O–
Od angles associated with the disorder in ice Ih and Ic [13] are not well reproduced here,
e.g. in ice Ic the Od–O–Od angle is very close to the tetrahedral value, the origin of this
disagreement is possibly related to the limited size of supercells used in the calculations. A
related study by Nelmes et al [23] predicts significant distortion of sublattices in ice VII away
from the ideal tetrahedral coordination. Further, we note here that none of the structural
parameters presented here predict such a significant distortion in the sub-lattices. Again, the
differences are attributed to the limited size of the supercell used to model the orientational
disorder.
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Table 2. The calculated angular data. Here H–O–H refers to a particular H2O molecule and
Od refers to oxygen donor atoms involved in hydrogen bonds with the hydrogen atoms of that
molecule. The α angle is given by (Od–O–Od)–(H–O–H) as defined in figure 5.

Od–O–Od angle H–O–H angle α angle
Ice phase (deg) (deg) (deg)

Ice Ic 109.46 106.52 2.94

Ice IX 94.36 102.77 −8.41
96.00 105.03 −9.03
96.78 105.03 −8.25

Ice II 85.48 105.64 −20.16
96.44 105.63 −9.20
85.48 101.97 −16.49
96.44 105.64 −9.20

Ice VI 75.57 101.81 −26.24
90.80 103.68 −12.88

128.00 108.30 19.70
126.04 108.61 17.43
127.00 109.12 17.88

Ice VII 106.15 105.01 1.14
108.14 105.82 2.32

Ice VIII 107.90 105.51 2.39

β angle (degrees)
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Figure 6. The calculated β angle data for ice Ih, ice IX, ice II, ice VI, ice VII and ice VIII.
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Figure 7. The calculated γ angle data for ice Ih, ice IX, ice II, ice VI, ice VII and ice VIII.

4.2. Dynamic results

The results of the dynamical calculations are presented in figures 8 and 9. The results are
presented in the form of total density of states (DOS) and projected density of states (PDOS),
where the DOS is projected onto intra-molecular modes of the isolated water molecule and
rigid molecule inter-molecular modes. DOS are calculated from frequencies according to the
expression

ρ(ω) =
∑
j

∂(ω − ωj )

and PDOS are calculated from the normal mode eigenvectors and frequencies using the
expression

ρi(ω) =
∑
j

∑
τ

(
νi

τ · νj

)2
∂(ω − ωj )

where νj is the set of normal mode eigenvectors resulting from the diagonalization of
the dynamical matrix and ωj the corresponding frequencies, ω is the frequency and
∂(ω − ωj ) is a Gaussian broadening function used to obtain a continuous spectrum from
the discrete set of frequencies. τ refers to a particular molecule in the unit cell and
νi

τ represents ‘pure’ eigenvectors associated with individual molecules. The particular
‘pure’ molecular eigenvectors are the anti-symmetric stretch, symmetric stretch and bending
normal-mode eigenvectors of each molecule together with eigenvectors representing rigid-
molecule translations in the three Cartesian directions and rigid-molecule rotations about
three perpendicular axes through the centre of mass of each molecule. The axes of rotation
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Figure 8. (a) The total density of states of all ice structures investigated here across the whole
frequency range. (b) The calculated total density of states (lower curves) of all structures in
the frequency range corresponding to molecular translation and rotation. For comparison the
experimental neutron spectra [2] (upper curves) are included. The approximate upper edge of the
translational band and lower edge of the rotational band are indicated by vertical arrows in each
case for the purpose of comparison.

are denoted x, y and z, where the y-axis coincides with the Cv symmetry axis of the molecule,
the z-axis is perpendicular to the plane of the molecule and the x-axis is defined perpendicular
to both of the other axes. The half width half maximum of the Gaussian broadening function
used is 15 cm−1 because this value is chosen as optimal in retaining the essential features of the
frequency spectra. Because of the limited size of the supercells this represents an extremely
coarse sampling of reciprocal space. The important features of the spectra are still clear,
however, and comparison with the experimental spectra is still possible. The PDOS enable a
clear understanding of the vibrational spectra in terms of molecular and lattice geometry.

The DOS across the whole frequency range of all phases studied is presented in figure 8(a).
In all cases four distinct bands corresponding to intra-molecular stretch and bend and inter-
molecular rotation and translation are observed. A magnification of the inter-molecular
frequency range up to 1300 cm−1 is presented in figure 8(b). The experimental IINS spectra
[2] are also included in this figure for direct comparison. Indicated on this figure are the upper
edge of the translational band and the lower edge of the rotational band for both theory and
experiment. As previously mentioned for ice Ih, the predicted band edges can differ by as
much as 100 cm−1. Compared to the experiment, this is typical of frequencies calculated
within current approximations used in density functional theory. However, features within
bands are well reproduced in most cases.
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Figure 9. (a) The projections of the vibrational density of states onto the stretching motion of the
isolated water molecule. For each phase the uppermost curve corresponds to the symmetric stretch
component and the bottom one to the anti-symmetric stretch. (b) The projections of the vibrational
density of states onto the bending motion of the isolated water molecule. (c) The projections of the
vibrational density of states onto the rigid body rotational motion of the isolated water molecule.
For each phase the x, y and z components of rotation are represented by the top, middle and bottom
curves, respectively. (d) The projections of the vibrational density of states onto a rigid molecule
translation relative to the Cartesian x, y and z axes. For each phase the x, y and z translational
motions are represented by the top, middle and bottom curves, respectively.

As mentioned, the highest frequency band originates from the stretching modes
of the isolated water molecule broadened by interactions with the hydrogen-bonded
lattice. The PDOS associated with the projection onto the anti-symmetric and symmetric
stretch normal mode eigenvectors of the isolated molecule are displayed in figure 9(a)
in the frequency range 2750–3550 cm−1. The PDOS associated with the bending
normal mode eigenvector of the isolated molecule is displayed in figure 9(b) in
the frequency range 1400–1800 cm−1. The PDOS resulting from projection onto a rigid
molecule rotational modes is displayed in figure 9(c) in the frequency range 300–1200 cm−1.
Finally, the PDOS resulting from projection onto a rigid molecule is displayed in figure 9(d)
in the frequency range 0–500 cm−1. For the frequency windows chosen associated with each
distinct projection no observable PDOS lies outside the window on the same scale. Table 3
contains a summary of these regions, along with tabulated experimental data [2–5] for
comparison. Again, as the calculations are performed at zero temperature and atmospheric
pressure (the unit cell in each case was relaxed to the minimum-energy configuration)
the experimental comparison is made to the lowest temperature results available with
extrapolations to atmospheric pressure. There are no significant differences in the calculated
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Figure 9. (Continued )

PDOS between the four possible proton orderings of an eight molecule ice Ic unit cell, or
between the six (out of a possible 17 [15]) proton orderings of the ice Ih unit cell. As the
PDOS for ice Ic and ice Ih are very similar we choose only to display them for ice Ih.

For phases possessing sub-lattices (ice VI, VII and VIII) we also performed projections
onto rigid sub-lattice normal mode eigenvectors, here the ‘pure’ eigenvectors are translational
modes where the rigid sub-lattices move relative to each other in the translational sense. Three
independent translations are possible corresponding to relative motion of sub-lattices in the
three Cartesian directions. The PDOS corresponding to projections onto these eigenvectors
are shown in figure 10. In each case the PDOS is dominated by three particular normal mode
frequencies. The frequencies of these three modes together with the corresponding direction
of sub-lattice relative motion of the modes are shown in table 4. In table 4 we also list the
magnitudes of the sum of the molecular dipole moments over each individual sub-lattice in the
structures (denoted by SDM) in units of the individual molecular dipole moment µ. The sum
of the molecular dipole moments over the entire unit cell is denoted by TDM. A sub-lattice
containing N water molecules whose Cv axes are all parallel to one another will have an SDM
of Nµ. Also listed is P, the unit vector along the direction of the SDM for each sub-lattice,
respectively. Note that the P of one sub-lattice is opposite to that of the other resulting in
unit cells of zero total dipole moment. The character of these modes is determined by the
non-hydrogen bonded interactions that exist between the sub-lattices [25].

An additional analysis was performed in the sub-lattice structures by repeating the PDOS
analysis after the removal of sub-lattice interactions. This was done by setting to zero the
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Table 3. Calculated and experimental frequency bands of the vibrational spectra for ice Ic,
ice Ih, ice IX, ice II, ice VI, ice VII and ice VIII. The experimental results are taken from
[2, 13, 14] and are included in brackets after the corresponding calculated values. For reference, the
normal modes of vibration of the isolated water molecule are 3799 (3756) cm−1 for anti-symmetric
stretch, 3676 (3657) cm−1 for symmetric stretch and 1595 (1505) cm−1 for the bending motion.
The experimental values are given in brackets.

Translational band Rotational band Bending bandc Stretching band

Ice phase (cm−1) (cm−1) (cm−1) (cm−1)

Ice Ic <394 580–1143 1540–1644, 1580 2837–3175
Ice Ih <385 610–1182 1584–1681, 1600 2888–3271

(563–1006) (1304–1755), (1610) (3019–3462)
Ice IX <359 553–1060 1599–1708, 1658 3027–3388

(523–926) (1369–1771), (1691) (3035–3502)
Ice II <394 448–980 1561–1687, 1590 3035–3422

(499–886) (1489–1787), (1707) (3059–3518)
Ice VI <329 405–1031 1534–1643, 1572 3178–3485

(467–942) (1530–1731), (1626) (3140–3542)
Ice VII(A)a <243 399–925 1499–1640, 1588 3241–3422

Ice VII(B)b <272 387–904 1532–1664, 1572 3242–3425
Ice VIII <241 365–988 1482–1652, 1580 3273–3437

(451–966)

a Both ice VII(A) and ice VII(B) consist of identical ice Ic sub-lattices anti-parallel to one another, where ice VII(A)
consists of six C-and two D-type hydrogen bonds, respectively.
b Ice VII(B) consists of four C- and four D-type hydrogen bonds, respectively.
c The third frequency in every row represents the position of the peak in the bending band.

appropriate elements of the dynamical matrix before it was diagonalized. The motivation here
was to quantify what effect the inter-sub-lattice interactions have on the vibrational density of
states, in particular whether they significantly affect the difference in the positions of the top of
the translational band of ice VIII (240 cm−1) compared to ice Ih (394 cm−1). This ‘artificial’
separation does not result in any significant shifts of the top of the translational band. For the
high-pressure phases (ice VII and ice VIII) this drop is on average 7 cm−1 and for ice VI it is
2 cm−1. These small shifts suggest, although not conclusively, that the reduction in frequency
of the upper edge of the translational band in going from ice Ih to ice VIII is principally due to
the elongation and subsequent softening of the hydrogen bonds. This result also suggests that
the inter-sub-lattice interactions do not significantly affect the chemical nature of the hydrogen
bonds.

5. Discussion

Each region of the spectrum obtained using the methods outlined above has structure that
reflects the geometrical characteristics and environments of the molecules making up the
different phases. Here we discuss trends in the dynamical results with respect to changes in
the complexity of the molecular environments.

5.1. The stretching region

Here we discuss a series of observations about the PDOS corresponding to the stretching
region and trends in the changes observed across the phase diagram. In particular we discuss
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Figure 10. The projection of the vibrational density of states onto rigid sub-lattice motion.
The sub-lattice motion is analysed by calculating a difference vector of the rigid body centre-
of-mass motions of the two sub-lattices, then projecting the components along each of the three
crystallographic directions.

the structural factors, which determine the width of each band and the positions of the upper
and lower edges of the bands.

In an isolated water molecule the normal modes with the highest frequencies are the
anti-symmetric stretch mode (3756 cm−1) and the symmetric stretch mode (3657 cm−1).
When the molecule is introduced into the lattice it will interact with other water molecules
via the hydrogen bond network. This interaction results in coupling of the anti-symmetric and
symmetric stretch motions (except where symmetry forbids coupling in certain systems). In
general, increased coupling of the water molecules to the hydrogen bond network will lower
the frequency of the associated normal modes and broaden them into bands.

Starting with the highest density structures, ice VIII and VII, we observe bands with
the smallest widths and starting at the highest frequencies of all structures considered. This
is indicative of the longer O–O distances in these structures resulting in the elongation and
subsequent weakening of the hydrogen bonds. There is considerable overlap of the symmetric
stretch band and anti-symmetric stretch band in these structures, although it is still clear
that anti-symmetric stretch-type motion is associated with a higher frequency compared to
symmetric stretch-type motion as it is in the isolated water molecule. As the density of the
structures decreases we observe considerable broadening of the bands and lowering of the
bottom edge of the bands in ice VI, ice II and ice IX. The latter is due to, and elaborated
on below, the shorter stronger hydrogen bonds present in these structures. The broadening
is due to considerable increase in complexity of the structures resulting in a wide range of
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Table 4. The frequencies of the dominant modes in projections onto rigid sublattice motion
together with features relating to the geometry of the particular structures. The quantities defined
here are described in detail in section 4.2. Although the two sub-lattices interact with one another
they are not ‘bonded’ together in the same way as the hydrogen bonds bond the water molecules
since the total energy of the ice VIII structure is not stationary with respect to the two sub-lattices.

ω

Ice phase (cm−1) r SDM TDM P

Ice VIII 158.4 −0.300, 0.172, −0.938 0.00, 0.00, 1.00
↑↓ 158.2 0.303, 0.949, 0.090 8.000 0.000

158.1 −0.888, 0.247, 0.388 0.00, 0.00, −1.00

Ice VII(A)a 163.0 −0.001, −1.000, 0.000 0.00, 1.00, 0.00
↑↓ 150.0 −0.573, 0.000, −0.819 4.000 0.000

149.2 −0.820, 0.000, 0.573 0.00, −1.00, 0.00

Ice VII(B) 164.1 1.000, 0.000, 0.000 0.00, 1/21/2, −1/21/2

↑↓ 160.6 0.004, 0.704, 0.710 (32)1/2 0.000

150.7 0.000, 0.701, 0.713 0.00, −1/21/2, 1/21/2

Ice VI 97.7 −0.088, 0.309, 0.947 0.46, 0.43, 0.78
↑↓ 82.3 −0.832, −0.531, 0.117 4.247 0.000

80.7 −0.539, 0.776, −0.326 −0.46, −0.43, −0.78

a Structures consisting of the same sub-lattices as A but with the c-axes of their sub-lattices positioned parallel or at
right angles to one another are found to be unstable, since both of these arrangements have non-zero total molecular
dipole moment. The arrangement with parallel sub-lattices has a total molecular dipole moment of 8 and the unit cell
composed of orthogonal sub-lattices has a total molecular dipole moment of (32)1/2.

hydrogen bond lengths and strengths and a range of coupling to the hydrogen bond network
due to geometrical factors as described later. These trends are also observed in the neutron
spectra (see figure 18 of [2] and table 3).

In general, the extent to which a particular water molecule will couple with the rest of the
lattice (and hence have the frequency of its normal modes lowered) will depend on two factors:
the length of the hydrogen bonds separating it from the rest of the lattice and the degree of
non-collinearity of the covalent bonds and hydrogen bonds originating from each hydrogen
atom. This latter condition appears to be more powerful as demonstrated by the fact that ice
VI has the highest stretching frequency of all the phases at 3485 cm−1, i.e. the closest value
to that obtained for the isolated water molecule. Again, the trends here are in agreement with
the neutron scattering spectra. Examination of the α and β angles (see table 2 and figure 6)
shows ice VI has the least collinear covalent and hydrogen bonds of all the phases in this
study, although its hydrogen bonds are shorter (1.80–1.86 Å) than those in ice VIII (2.01 Å).
The geometrical effect here is due to the fact that for a collinear structure the covalent bond
stretch will maximally couple to the hydrogen bond (i.e., induce maximal changes in its length)
compared to a non-collinear arrangement (in a structure where the covalent bond and hydrogen
bond are perpendicular, to a first approximation, a change in the covalent bond length due to
a molecular stretch will induce no change in the hydrogen bond length).

If we consider a normal mode eigenvector where the characteristic motion associated
with each molecule is dominated by either symmetric stretch-type motion or anti-symmetric
stretch-type motion, then the relative phase of the motion on adjacent molecules plays a role
in determining the frequency [26, 27]. For a pair of molecules bonded by a collinear hydrogen
bond the relative phase of anti-symmetric stretch-type motion has minimal effect. Here the
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motion of the hydrogen bonded oxygen is perpendicular to the hydrogen bond and does not
play a role in the distortion of the hydrogen bond and the associated coupling, i.e. in an anti-
symmetric stretch mode of an isolated molecule the oxygen moves perpendicular to the axis of
symmetry. Conversely, if both molecules involved in the hydrogen are undergoing symmetric
stretch-type motion then the direction of motion of the hydrogen bonded oxygen is parallel
to the hydrogen bond, i.e. in a symmetric stretch mode of an isolated molecule the direction
of motion of the oxygen is along the axis of symmetry. In this case if both molecules move
in phase there is maximal distortion of the hydrogen bond and maximal coupling and if both
molecules move out of phase there is minimal distortion of the hydrogen bond and minimal
coupling. It is this behaviour that causes the highest and lowest frequencies in the stretching
bands of ice Ic and ice Ih to have symmetric stretch character. Similar couplings exist between
mixed symmetric stretch and anti-symmetric stretch modes and result in a distinct splitting of
the stretching bands in ice Ic and ice Ih into bands of in-phase and out-of-phase character. This
splitting is also in agreement with the neutron spectra of [2] where evidence of two distinct
bands in this region is seen. The splitting is not complete as predicted here due to instrument
resolution resulting in a broadening of the features.

The top halves of the stretching bands in ice VI, ice VII and ice VIII are mainly anti-
symmetric stretch. In these structures the phase splitting outlined above is smaller than the
difference between anti-symmetric and symmetric stretch frequencies. Ice VII(A) (78%), ice
VII(B) (76%), ice VIII (83%) and ice VI (61%) all possess a highest frequency mode whose
projection is predominantly onto the anti-symmetric stretch motion. The percentage of anti-
symmetric stretch is given here in brackets next to the appropriate structure. Conversely, for
ice Ic and ice Ih the top half of the modes in the stretching band have more symmetric stretch
character than anti-symmetric stretch character for the reasons explained above. The upper
edge of the stretching region moves up in frequency with increasing density and the projection
onto the anti-symmetric motion at this frequency increases. This is perhaps counter-intuitive
but is due to the lengthening of hydrogen bonds with increasing density, as the open near-
tetrahedrally coordinated structures are distorted into more close packed ones. The lower edge
of the stretching region moves up in frequency with increasing density. For all of the phases
the symmetric stretch projection extends to lower frequencies compared to the corresponding
anti-symmetric stretch projection. This effect is most pronounced in ice Ic, closely followed
by ice VII and ice VIII, and is rather less pronounced in ice IX, ice II and ice VI due to the
very distorted structures preventing coupling of the covalent and hydrogen bonds as explained
above.

5.2. The bending region

Changes in the bending region as a function of structure are in general less dramatic than
the changes seen in the stretching region. This is due to the fact that in structures with
collinear bonds, to a first order of approximation, hydrogen bonds are not affected by bending
distortions of molecules. In such distortions the motion of hydrogen atoms is perpendicular to
the hydrogen bonds. The motion of the oxygen has a component along the hydrogen bond but
this is small. The overall shift of the bending modes from the isolated molecule (frequency
1505 cm−1) is much smaller than the stretching modes for this reason. The general downward
trend in the lower edge of the bending band and the broadening of the band from ice Ih
through to ice VIII is attributed to the increasing non-collinear nature of hydrogen bonds and
subsequent increase in the coupling of bending normal modes to the lattice. In the sub-lattice
structures (ice VI, VII and VIII) non-hydrogen bond interactions also play a role.
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The β-angle data can be used to explain the relative positions of the upper edge of the
bending band for all the described ice phases. We observe that the magnitude of the β angle
is linked with a tendency to rotate about the x-axis of a molecule, and so provides a measure
of the resistance of a particular molecule to bending motions. This is illustrated for ice IX
whose type I molecules are characterized by a particularly large β angle. This explains why
the frequencies of its entire bending band are higher than any other of the phases; out of step
with its position on the phase diagram with a peak at 1658 cm−1 (see table 3).

For all phases we have assigned the peak in the bending band as the particular frequency
that has the maximum mixing of the x-component of rotation: this coincides with the largest
intensity peak in each of the bands seen in the Gaussian broadened spectra. We observe
that for every phase there is a bending mode which has at least an order of magnitude more
rotational mixing than any other projection. It is always the x-component of rotation that is
dominant at this frequency rather than the y- or z-component. For all phases, molecules with
the largest projections onto the bending motion have the largest mixing with the symmetric-
stretch projection and the smallest mixing with any of the rotational projections.

This behaviour is particularly clearly illustrated for ice IX; the type I molecules have
contributions to the density of states for the peak in the bending projection an order of
magnitude smaller than the contributions from the type II molecules. At the bending peak
the type I molecules have no appreciable coupling with any rotational or translational motion,
which would bring down the frequency. Type I molecules produced an overall mixing with
the symmetric stretch projection that was three times greater than for the molecules in ice Ih
whereas type II molecules did not possess any significant mixings with the stretching motions.
Coupling to stretching motion raises the frequencies and so the combination of it and the lack
of mixing with the rotational and translational motions explains why overall ice IX has such
a high bending frequency. It is possible that the extreme geometry of ice IX has altered the
chemical nature of the constituent covalent and hydrogen bonds. In fact it is shown in [25]
that the hydrogen bonds in ice IX are partly covalent in character, more so than any of the
other ice phases.

5.3. The rotational region

The denser the phase is, the lower the rotational frequencies will be. Again, this
counterintuitive fact is a consequence of the hydrogen bonded O–O distances lengthening
with increasing density. The longer the hydrogen bonds the weaker they are and consequently,
the lower the characteristic frequencies of lattice vibrations. Comparison with experimental
spectra [2] in this region is again favourable. The overall decrease in frequency in this region
is clearly observable. Again we note there is typically a 100 cm−1 error in the position of
the lower edge in the rotational spectra which we attribute to the GGA. Particular features
of note reproduced in the spectra include the broad featureless spectra of ice Ih, the
dominance of low frequency modes in ice IX, the prominent two peaks near the lower edge of
the rotational band and the higher frequency peak at ∼800 cm−1 in ice II and similar features
in ice VI and the extremely prominent double peak at the lower edge in ice VIII. The ability
to reproduce the rich variety of features in this region indicates that dispersion does not play
an important role in determining the spectra.

For a particular phase we observe a connection between the α, β and γ angles in
the relaxed structure and the z-, x- and y-components of rotation, respectively. The larger
the particular angle, the more dominant the corresponding type of rotation is at the bottom
of the rotational band. We illustrate the connection between the range of the angular data in
the relaxed structure and the z-, x- and y-components of rotation for ice IX and ice II where
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they are particularly clear. At the bottom of the rotational band of ice IX the projections onto
the x- and z-components of rotation for the type II molecules are an order of magnitude larger
for those of the type I molecules. The type I molecules have the same order of magnitude
of projections onto the x and y components of rotation whereas the type II molecules have
negligible contributions from the y components of rotation. The type I and type II molecules
possess γ angles of magnitudes <3.5◦ and >19◦, respectively, and the former more readily
perform y-rotations since these molecules are more collinear with their connecting hydrogen.
The type I molecules are more resistant to undergoing x-rotations at the bottom of the rotational
band than are the type II molecules. This is evident by the type I molecules coupling to the
bending motions at the bottom of the rotational band. Since they have large β angles, no such
mixings occur for the type II molecules. For ice II the y-component of rotation is greater
than for any other phase at the bottom of the rotational band. Examining the ice II γ -angle
data shows that this is the only phase for which there are two narrow bands of positive and
negative γ data having the same magnitude. So in ice II both hydrogen bonds attached to a
water molecule can be twisted relative to it; this correlates with the ease of y-rotation. Ice
VI has virtually no x- or y-rotation contributions at the lower edge of the band. This is due
to the β and the γ angles having a broad range of values. We might expect the bottom of
the rotational bands of ice Ic and ice VIII to be similar since both structures possess close to
ideal tetrahedral coordination of the oxygen lattice. This is not the case. Ice Ic has negligible
contributions from the y-component of rotation and non-negligible x-rotational contributions,
the converse being true for ice VIII. The explanation for this difference may lie in the influence
of the sub-lattices in ice VIII, evidenced by mixings with translational motion, in particular
translational components parallel to the c-axis. Ice Ic has no translational components parallel
to the c-axis.

5.4. Translational region

The reproduction of features in the experimental spectra in this region is again favourable.
As for the rotational region predicted frequencies differ by ∼100 cm−1 compared to the
experiment due to the approximate nature of the GGA. The computational method employed
here is not capable of reproducing the acoustic region hence no attempt to compare features in
this region is made. Features in the optical bands at the upper edge of the translational region
are well reproduced. The double-peak structure observed experimentally in ice Ih in this
region is clearly reproduced together with its contraction into a single peak in higher density
structure with longest H-bonds. A complete description of the origin of this feature is subtle
and will appear elsewhere [27].

The PDOS associated with translational motion of the water molecules is shown in
figure 9(d). The higher pressure phases have the tops of their bands pushed down relative
to those of the lower pressure phases mainly due to the lengthening hydrogen bonds rather
than interactions between non-hydrogen bonded oxygens that exist between the sub-lattices.
The lengthening hydrogen bonds allow freer motion of the water molecules so that they bind
together. In ice VII(B) the top of the translational band calculated is about 30 cm−1 higher than
for either ice VII(A) or ice VIII. This could be explained by the fact that P (see section 4.2.)
is influencing the optic-type motion at the top of the translational band. P has two non-zero
components for ice VII(B) (see table 3) whereas for ice VII(A) and ice VIII P has only one
component. This may explain why the frequencies at the top of the translational band for ice
VII(A) and ice VIII are so similar. For ice VI the sub-lattices will interact less than for ice
VIII or ice VII since the closest non-hydrogen bonded oxygens are separated by nearly 3.4
Å. Ice II does not have sub-lattices, but like ice VI, ice VII and ice VIII it does not have a
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frequency gap between the top of the translational band and the bottom of the rotational band.
This absence of a distinct gap in ice II is due to the proximity of the non-hydrogen bonded
oxygens (less than 3.35 Å).

In structures possessing sub-lattices translational normal modes exist in which the rigid
sub-lattices move relative to each other. The Raman spectrum of ice VIII for relative motion
of the centres of mass of the two sub-lattices is available [28]. We compare these to the three
calculated normal modes of ice VIII which behave in this way (see table 4). In the following
section we always refer to the highest of the three frequencies given for each of the structures
in table 2. The experimental frequency corresponding to the relative displacement of the two
sub-lattices parallel to the z-axis (169.2 cm−1) compares well with our calculated frequency
(158.4 cm−1). Note that in this mode there are non-negligible mixings of x- and y-translational
components. This is due to the coupling of x- and z-components of rotation with the motion
parallel to the z-axis. It was also found in [28] that the value of the isotope ratio (i.e. the
H2O/D2O frequency ratio) for this motion was 1.047. The authors attributed the difference
between this value and the value of 1.054 (for harmonic translational motion, the ratio of the
square root of the molecular masses, (20/18)1/2) to the presence of coupling with stretching,
bending or rotational motion. We obtain an isotope ratio of 1.041 for this normal mode in ice
VIII. Inelastic incoherent neutron scattering data [29] give the closest peak with a frequency
of 166.7 cm−1 and isotope ratio as 1.045, which corresponds better to our data. For ice VII(A)
and ice VII(B) we obtain isotope ratios of 1.045 and 1.048, respectively. These two values
show that the rigid motion of the sub-lattices is more harmonic than for ice VIII (especially in
the ice VII(B) case). This is clearly demonstrated for the r values in table 4.

6. Conclusions

We have been able to apply geometrical analysis to explain the important features of the
vibrational density of states in each of the stretching, bending, rotational, translational and
sub-lattice projections. It was important to perform the molecular projections outlined, rather
than working with the total spectra especially for the disordered phases in order to describe
links between the structure and vibrational frequencies in all the phases studied. Additional
projection onto sub-lattice motion has allowed the non-hydrogen bonded interactions between
sub-lattices to be probed. In a parallel study the chemistry of interactions in these molecular
solids has been fully described using the theory of ‘atoms in molecules’ [25, 30].
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[11] Ojamäe L, Hermansson K, Dovesi R, Roetti C and Saunders V R 1994 J. Chem. Phys. 100 2128
[12] Lee C and Vanderbilt D 1993 Chem. Phys. Lett. 210 279
[13] Petrenko V F and Whitworth R W 1999 Physics of Ice (Oxford: Oxford University Press)
[14] Hobbs P V 1974 Ice Physics (Oxford: Clarendon)
[15] Howe R 1987 J. Physique Coll. C1 48 599
[16] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1993 Rev. Mod. Phys. 64 1045
[17] Perdew J P and Wang Y 1992 Phys. Rev. B 46 12 947
[18] Hamann D R 1997 Phys. Rev. B 55 10 157
[19] Morrison I, Jenkins S, Li J-C, Xantheas S S and Payne M C 1997 J. Phys Chem. B 101 6146
[20] Ackland G J, Warren M C and Clark S J 1997 J. Phys.: Condens. Matter. 9 7861
[21] Dolling G 1996 Method. Comput. Phys. 15 1
[22] Jenkins S 1999 PhD thesis University of Salford
[23] Nelmes R J, Loveday J S, Marshall W G, Hamel G, Besson J M and Klotz S 1998 Phys. Rev. Lett. 81 2719
[24] Klug D D, Tse J S and Whalley E 1991 J. Chem. Phys. 95 7011
[25] Jenkins S and Morrison I 2000 Chem. Phys. Lett. 317 97
[26] Morrison I and Jenkins S 1999 Physica B: Phys. Condens. Matter 263 442
[27] Morrison I and Jenkins S to be published
[28] Wong P T T and Whalley E 1976 J. Chem. Phys. 64 2359
[29] Kolesnikov A, Li J-C, Ross D K, Sinitzin V V, Barkalov O I, Bokhenkov E L and Ponyatovskii E G 1992 Phys.

Lett. A 168 308
[30] Jenkins S and Morrison I 1999 J. Phys. Chem 103 11 041


